In [4]:
import pandas as pd
import glob
# Path where NPCI Excel files are stored
files = glob.glob("C:/Users/lakshita rawat/Downloads/Excel_file_upi/*.xlsx")
all_data = []
for file in files:
print("Reading:", file) # Check which file is being read
df = pd.read_excel(file)
df["SourceFile"] = file # keep track of origin
all_data.append(df)
# Merge all files
npci = pd.concat(all_data, ignore_index=True)
print("Shape:", npci.shape)
print(npci.head())
# Save merged dataset
npci.to_csv("C:/Users/lakshita rawat/Downloads/Excel_file_upi/npci_upi_stats.csv", index=False)
Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2016-2017, 2017-2018.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2018-19-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2019-20-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2020-21-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2021-22-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2022-23-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2023-24-Monthly.xlsx Reading: C:/Users/lakshita rawat/Downloads/Excel_file_upi\2024-25-Monthly.xlsx Shape: (112, 11) Unnamed: 0 Unnamed: 1 Unnamed: 2 2017-2018 \ 0 NaN NaN Months No. of Banks live on UPI 1 NaN NaN Mar-2018 91 2 NaN NaN Feb-2018 86 3 NaN NaN Jan-2018 71 4 NaN NaN Dec-2017 67 Unnamed: 4 Unnamed: 5 \ 0 Volume (In Mn.) Value (In Cr.) 1 178.05 24172.6 2 171.4 19126.2 3 151.83 15571.2 4 145.64 13174.24 SourceFile Month \ 0 C:/Users/lakshita rawat/Downloads/Excel_file_u... NaN 1 C:/Users/lakshita rawat/Downloads/Excel_file_u... NaN 2 C:/Users/lakshita rawat/Downloads/Excel_file_u... NaN 3 C:/Users/lakshita rawat/Downloads/Excel_file_u... NaN 4 C:/Users/lakshita rawat/Downloads/Excel_file_u... NaN No. of Banks live on UPI Volume (In Mn.) Value (In Cr.) 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 NaN NaN NaN 4 NaN NaN NaN